第8回配付資料

```
同期リセットつきレジスタ
library ieee;
use ieee.std logic 1164.all;
entity sync reg8 is
 port (
   clk: in std logic;
   d: in std logic vector(7 downto 0);
   q: out std logic vector(7 downto 0)
 );
end sync reg8;
architecture arch of sync reg8 is
begin
 process (clk) begin
   if (clk'event and clk = '1') then
     if (rst = '0') then
      q <= "00000000";
    else
      q <= d;
     end if;
   end if;
 end process;
end arch;
非同期セットつきレジスタ
library ieee;
use ieee.std logic 1164.all;
entity async reg8 is
 port (
   clk: in std logic;
   d: in std logic vector(7 downto 0);
   q: out std logic_vector(7 downto 0)
 );
end async reg8;
architecture arch of async reg8 is
 process (clk, rst) begin
   if (rst == '0') then
    q <= "00000000";
   elseif (clk'event and clk = '1') then
    q <= d;
   end if;
 end process;
end arch;
```

単純なカウンタ

```
library ieee;
use ieee.std logic 1164.all;
use ieee.std logic arith.all;
entity count8 is
 port (
   clk: in std logic;
   q: out std logic vector(7 downto 0);
 );
end count8;
architecture arch of count8 is
 signal q_reg: std_logic_vector(7 downto 0);
begin
 process (clk) begin
   if (clk'event and clk = '1') then
     if (rst = '0') then
      q reg <= "00000000";</pre>
     else
      q reg <= q reg + 1;
     end if;
   end if;
 end process;
 q <= q reg;
end arch;
```